On relativistic quantum theory for particles with spin $1 / 2$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15 L659
(http://iopscience.iop.org/0305-4470/15/12/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:04

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On relativistic quantum theory for particles with spin $\frac{1}{2} \dagger$

L P Horwitz and R Arshansky
Tel Aviv University, Ramat Aviv, Israel

Received 31 August 1982

Abstract

We study a family of Hilbert spaces with positive definite invariant scalar product for the quantum mechanical description of relativistic spin $-\frac{1}{2}$ particles. The Hermitian and anti-Hermitian parts of the Dirac operator $\gamma^{\mu} p_{\mu}$ are related to energy and helicity. Replacing p^{μ} by $p^{\mu}-e A^{\mu}$, the difference between the squares of these operators provides a minimal coupling evolution operator, similar to the second-order Dirac operator, for which $F^{\mu \nu}$ is coupled to a covariant form of the Pauli spin matrices which generate $\operatorname{SU}(2)$ in a space-like surface. No Dirac sea is required for the consistency of the theory.

In this letter, we shall study some aspects of a manifestly relativistically covariant quantum theory (Horwitz and Piron 1973, Horwitz and Lavie 1982 and references listed there; see, in particular, Stueckelberg 1941 and 1942) for spin- $-\frac{1}{2}$ particles (Horwitz et al 1975; Piron and Reuse 1978; some related ideas occur in van Dam and Biedenharn (1976, § III)). The wavefunctions $\psi_{\tau}(x)$ are defined on the manifold R^{4} of space and time; they are elements of $L^{2}\left(R^{4} ; \mathrm{d}^{4} x\right)$ (vector-valued for non-zero spin), and $\left|\psi_{\tau}(x)\right|^{2}$ is the probability density for the occurrence of an event at the point $x^{\mu} \in R^{4}$ at a given value of the invariant historical evolution parameter $\tau \not \ddagger$.

In the case of a particle with spin, the components of $\psi_{T}(x)$ must transform as a representation of the Lorentz group; since the norm must be invariant, the representation must be unitary. If we were to use infinite-dimensional representations containing all spins, we would reach a physical contradiction. One therefore turns to the induced representation of Wigner.

Wigner's representation corresponds, in the spin $-\frac{1}{2}$ case, to 2×2 complex unitary matrices parametrised by the particle momentum, $D(\Lambda, p)_{\sigma \sigma^{\prime}}$. Since the canonical variables x^{μ}, p^{μ} satisfy (we take the metric signature to be $(-,+,+,+)$)

$$
\begin{equation*}
\left[x^{\mu}, p^{\nu}\right]=\mathrm{i} g^{\mu \nu} \tag{1}
\end{equation*}
$$

the expectation value of x^{μ}, for example, would not be covariant. Hence, one uses a representation of this type induced on the little group of a time-like vector $n^{\mu}\left(n^{\mu} n_{\mu}=-1\right)$ which commutes with x^{μ} and p^{ν}. The (two-component spin- $\frac{1}{2}$) wavefunction then transforms as (Horwitz et al 1975, Piron and Reuse 1978)

$$
\begin{equation*}
\hat{\psi}_{\tau n \sigma}^{\prime}(x)=D(\Lambda, n)_{\sigma \sigma^{\prime}} \hat{\psi}_{\tau, \Lambda^{-1} n, \sigma^{\prime}}\left(\Lambda^{-1} x\right) . \tag{2}
\end{equation*}
$$

[^0]Here

$$
\begin{equation*}
D(\Lambda, n)=L^{-1}(n) \Lambda L\left(\Lambda^{-1} n\right) \tag{3}
\end{equation*}
$$

where $L(n), \Lambda$ are $\operatorname{SL}(2, C)$ matrices which satisfy

$$
\begin{equation*}
\Lambda^{\dagger} \sigma^{\mu} n_{\mu} \Lambda=\sigma^{\mu}\left(\Lambda^{-1} n\right)_{\mu} \tag{4}
\end{equation*}
$$

and $\sigma^{\mu}=(1, \boldsymbol{\sigma}) ; L(n)$ corresponds to a transformation bringing $(\pm 1,0,0,0)$ to n^{μ}. The conjugate representation, with matrices Λ, is also defined by (4), but with $\sigma^{\mu}=(1,-\boldsymbol{\sigma})$. Since $\Lambda \Lambda^{+}=1$, operators linear in σ^{μ} or σ^{μ} connect these representations, and hence we define the norm for the spin- $\frac{1}{2}$ system, in the Hilbert space \mathscr{H}_{n}, as (in the following, we differ from the treatment given in Piron and Reuse (1978))

$$
\begin{equation*}
N=\int \mathrm{d}^{4} x\left(\left|\hat{\psi}_{\tau n}(x)\right|^{2}+\left|\hat{\varphi}_{\tau n}(x)\right|^{2}\right) \tag{5}
\end{equation*}
$$

where $\hat{\varphi}_{\tau n}$ transforms with D. from (2) and (3), it follows that $L(n) \hat{\psi}_{\tau n}$ transforms with Λ, and $L(n) \hat{\varphi}_{7 n}$ with Λ; making this replacement in (5), and using the fact, obtained from (4), that $L(n)^{\dagger-1} L(n)^{-1}=\mp \sigma^{\mu} n_{\mu}$ and $L(n)^{\dagger-1} L(n)^{-1}=\mp \sigma^{\mu} n_{\mu}$, one finds that (we use the representation for γ^{μ} given by Bjorken and Drell (1964))

$$
\begin{equation*}
N=\mp \int \mathrm{d}^{4} x \bar{\psi}_{\pi n}(x) \gamma \cdot n \psi_{\tau n}(x) \tag{6}
\end{equation*}
$$

where $\left.\gamma \cdot n \equiv \gamma^{\mu} n_{\mu}\left((\gamma \cdot n)^{2}=\right)\right)$,

$$
\psi_{\tau n}(x)=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \tag{7}\\
-1 & 1
\end{array}\right)\binom{L(n) \hat{\psi}_{\tau n}(x)}{L(n) \hat{\varphi}_{\tau n}(x)}
$$

and \mp corresponds to n^{μ} in the positive or negative light cone. The wavefunctions defined by (7) transform as

$$
\begin{equation*}
\psi_{\tau n}^{\prime}(x)=S(\Lambda) \psi_{\tau \Lambda^{-1}{ }_{n}}\left(\Lambda^{-1} x\right) \tag{8}
\end{equation*}
$$

and $S(\Lambda)$ is generated in the usual way by $\Sigma^{\mu \nu}=\frac{1}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.
The Dirac operator $\gamma \cdot p$ is not Hermitian in the (invariant) scalar product associated with (6). We therefore consider the Hermitian and anti-Hermitian parts

$$
\begin{align*}
& K_{\mathrm{L}}=\frac{1}{2}(\gamma \cdot p+\gamma \cdot n \gamma \cdot p \gamma \cdot n)=-(p \cdot n)(\gamma \cdot n), \\
& K_{\mathrm{T}}=\frac{1}{2} \gamma^{5}(\gamma \cdot p-\gamma \cdot n \gamma \cdot p \gamma \cdot n)=-2 \mathrm{i} \gamma^{5}(p \cdot K)(\gamma \cdot n), \tag{9}
\end{align*}
$$

where $K^{\mu}=\Sigma^{\mu \nu} n_{\nu}$, and we have introduced the factor γ^{5} in the second of (9) so that K_{T} is Hermitian and commutes with K_{L}. Since

$$
\begin{equation*}
K_{\mathrm{L}}^{2}=(p \cdot n)^{2} \quad \text { and } \quad K_{\mathrm{T}}^{2}=p^{2}+(p \cdot n)^{2} \tag{10}
\end{equation*}
$$

we may consider $K_{\mathrm{T}}^{2}-K_{\mathrm{L}}^{2}=p^{2}$ as the operator analogous to the second-order mass eigenvalue condition for the free Dirac equation. For the equation of evolution (Horwitz and Piron 1973)

$$
\begin{equation*}
\mathrm{i} \partial \psi_{\tau n} / \partial \tau=K \psi_{\tau n} \tag{11}
\end{equation*}
$$

we choose the free dynamical evolution operator to be

$$
\begin{equation*}
K_{0}=(1 / 2 M)\left(\boldsymbol{K}_{\mathrm{T}}^{2}-K_{\mathrm{L}}^{2}\right) \tag{12}
\end{equation*}
$$

Since (in the absence of electromagnetism), K_{L} and K_{T} commute with each other and
K_{0}, and $\gamma \cdot n$ commutes with these operators as well ($\left\{\gamma \cdot n, K^{n}\right\}=0$), the free solutions can be decomposed according to the projections
$P_{ \pm}=\frac{1}{2}(1 \mp \gamma \cdot n), \quad P_{E \pm}=\frac{1}{2}\left(1 \mp \frac{p \cdot n}{|p \cdot n|}\right), \quad P_{n \pm}=\frac{1}{2}\left(1 \pm \frac{2 \mathrm{i} \gamma^{5} K \cdot p}{\left[p^{2}+(p \cdot n)^{2}\right]^{1 / 2}}\right)$.
In the special frame for which $n^{\mu}=(1,0,0,0), P_{n \pm}$ is seen to correspond to helicity:

$$
\begin{equation*}
2 \mathrm{i} \gamma^{5} K \cdot p /\left[p^{2}+(p \cdot n)^{2}\right]^{1 / 2} \rightarrow \boldsymbol{\sigma} \cdot \boldsymbol{p} /|\boldsymbol{p}| \tag{14}
\end{equation*}
$$

In the presence of electromagnetic interaction, we replace p by $p-e A$ in K_{L} and $K_{\mathrm{T}_{5}}$ The operator (12) then becomes ($\gamma \cdot n$ commutes with this K as well; note that γ^{5} also commutes with K and hence a chiral decomposition is also possible)

$$
\begin{equation*}
K=(p-e A)^{2} / 2 M+(e / 2 M) \Sigma_{n}^{\mu \nu} F_{\mu \nu}(x) \tag{15}
\end{equation*}
$$

where \dagger

$$
\begin{equation*}
\Sigma_{n}^{\mu \nu}=\Sigma^{\mu \nu}+K^{\mu} n^{\nu}-K^{\nu} n^{\mu} . \tag{16}
\end{equation*}
$$

The quantities $K^{\mu}, \Sigma^{\mu \nu}$ satisfy

$$
\begin{align*}
& {\left[K^{\mu}, K^{\nu}\right]=-\mathrm{i} \Sigma_{n}^{\mu \nu}, } \\
& {\left[\Sigma_{n}^{\mu \nu}, K^{\lambda}\right]=-\mathrm{i}\left[\left(g^{\nu \lambda}+n^{\nu} n^{\lambda}\right) K^{\mu}-\left(g^{\mu \lambda}+n^{\mu} n^{\lambda}\right) K^{\nu}\right], } \tag{17}\\
& {\left[\Sigma_{n}^{\mu \nu}, \Sigma_{n}^{\lambda \sigma}\right]=-\mathrm{i}\left[\left(g^{\nu \lambda}+n^{\nu} n^{\lambda}\right) \Sigma_{n}^{\mu \sigma}+\left(g^{\sigma \mu}+n^{\sigma} n^{\mu}\right) \Sigma_{n}^{\lambda \nu}\right.} \\
&\left.-\left(g^{\mu \lambda}+n^{\mu} n^{\lambda}\right) \Sigma_{n}^{\nu \sigma}+\left(g^{\sigma \nu}+n^{\sigma} n^{\nu}\right) \Sigma_{n}^{\lambda \mu}\right] . \tag{18}
\end{align*}
$$

Since $K^{\mu} n_{\mu}=n^{\mu} \Sigma_{n}^{\mu \nu}=0$, there are only three independent K^{μ} and three $\Sigma_{n}^{\mu \nu}$. The $\Sigma_{n}^{\mu \nu}$ (see remark after equation (19)) are a covariant form of the Pauli matrices, and (18) is the corresponding form of $\mathrm{SU}(2)$ in the space-like hypersurface orthogonal to n^{μ}. The three independent K^{μ} correspond to the non-compact part of the algebra. The covariance of the theory follows from

$$
\begin{equation*}
S^{-1}(\Lambda) \Sigma_{\Lambda n}^{\mu \nu} S(\Lambda) \Lambda_{\mu}^{\lambda} \Lambda_{\nu}^{\sigma}=\Sigma_{n}^{\lambda \sigma} . \tag{19}
\end{equation*}
$$

In the special frame for which $n^{\mu}=(1,0,0,0), \Sigma_{n}^{i j}$ becomes $\frac{1}{2} \sigma^{k}\left(i, j, k\right.$ cyclic) and $\Sigma_{n}^{0 j}$ goes to zero. In this frame (which we understand as the frame of the filter preparing the state), there is no electric interaction with the spin in the minimal coupling evolution operator (15). We remark that a spin coupling which becomes pure electric in the special frame is generated by (for $p \rightarrow p-e A$)

$$
\begin{equation*}
\mathrm{i}\left[K_{\mathrm{T}}, K_{\mathrm{L}}\right]=-\mathrm{i} e \gamma^{\mathrm{S}}\left(\boldsymbol{K}^{\mu} n^{\nu}-K^{\nu} n^{\mu}\right) F_{\mu \nu} \tag{20}
\end{equation*}
$$

The discrete symmetries act on the wavefunctions as follows:

$$
\begin{align*}
& \psi_{\tau n}^{C}(x)=C \gamma^{0} \psi_{-\tau, n}^{*}(x) \quad\left(C=\mathrm{i} \gamma_{2} \gamma^{0}\right), \tag{21}\\
& \psi_{\tau n}^{P}(x)=\gamma^{0} \psi_{\tau,-n, n^{\mathrm{o}}(-x, t),} \tag{22}\\
& \psi_{\tau n}^{\mathrm{T}}(x)=\mathrm{i} \gamma^{1} \gamma^{3} \psi_{-\tau, n,-n}^{*}(\boldsymbol{x},-t), \tag{23}\\
& \psi_{\tau n}^{C P T}(x)=\mathrm{i} \gamma^{5} \psi_{\tau,-n}(-x,-t) . \tag{24}
\end{align*}
$$

The CPT conjugate wavefunction, according to its evolution in τ, moves backwards

[^1]in space-time relative to the motion of $\psi_{\tau n}$. If $\psi_{\tau n}$ contains only $E>0$ components, it moves forward in t (Horwitz and Piron 1973) and corresponds to the system observed in the laboratory. If it contains only $E<0$ components, the wave packet moves backward in t. It is then the CPT conjugate which corresponds to the observed system moving forward in time, with charge $-e$. No Dirac sea is required for the consistency of the theory (unbounded transitions to $E<0$ are prevented by the conservation of K).

References

Arshansky R, Horwitz L P and Lavie Y 1982 Particles vs. Events: The concatenated structure of world lines in relativistic quantum mechanics, Tel Aviv University preprint TAUP 1053/82
Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill) p 282
van Dam H and Biedenharn L C 1976 Phys. Rev. D 14405
Horwitz L P and Lavie Y 1982 Phys. Rev. D in press
Horwitz L P and Piron C 1973 Helv. Phys. Acta 46316
Horwitz L P, Piron C and Reuse F 1975 Helv. Phys. Acta 48546
Piron C and Reuse F 1978 Helv. Phys. Acta 51146
Stueckelberg E C G 1941 Helv. Phys. Acta 14316
-_ 1942 Helv. Phys. Acta 1523
Todorov I T 1981 Constraint Hamiltonian Mechanics of Directly Interacting Relativistic Particles, Barcelona Workshop, Relativistic action-at-a-distance, classical and quantum aspects, June 1981.

[^0]: \dagger Work supported in part by the US-Israel Binational Science Foundation (BSF), Jerusalem, Israel.
 \ddagger In practice, measurements are not carried out at a fixed τ. The electromagnetic field, for example, in a semiclassical treatment (Horwitz and Lavie 1982), is generated by a conserved current which is given by an integral over all τ (i.e. associated with the entire world lines). Hence, a detector which is activated by electromagnetic interaction is sensitive to the space-time configuration of the system, but not to the values of τ (see Arshansky et al 1982 for a discussion of this point).

[^1]: \dagger Internal angular momentum variables of the type $\Sigma_{n}^{\mu \nu}, K^{\mu}$ have been used by Todorov (1981), but using p^{μ} in place of n^{μ} (in Todorov's work, $\Sigma_{p}^{\mu \nu}$ is equivalent to $\Sigma^{\mu \nu}$ on the constraint hypersurface).

