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LE’ITER TO THE EDITOR 

On relativistic quantum theory for particles with spin it 
L P Horwitz and R Arshansky 
Tel Aviv University, Ramat Aviv, Israel 

Received 31 August 1982 

Abstract. We study a family of Hilbert spaces with positive definite invariant scalar product 
for the quantum mechanical description of relativistic spin-f particles. The Hermitian and 
anti-Hermitian parts of the Dirac operator y”pc are related to energy and helicity. 
Replacing p’ by p’ -eA’, the difference between the squares of these operators provides 
a minimal coupling evolution operator, similar to the second-order Dirac operator, for 
which F” is coupled to a covariant form of the Pauli spin matrices which generate SU(2) 
in a space-like surface. No Dirac sea is required for the consistency of the theory. 

In this letter, we shall study some aspects of a manifestly relativistically covariant 
quantum theory (Horwitz and Piron 1973, Horwitz and Lavie 1982 and references 
listed there; see, in particular, Stueckelberg 1941 and 1942) for spin-$ particles 
(Horwitz et ai 1975; Piron and Reuse 1978; some related ideas occur in van Dam 
and Biedenharn (1976, Q 111)). The wavefunctions & ( x )  are defined on the manifold 
R4 of space and time; they are elements of L2(R4; d4x) (vector-valued for non-zero 
spin), and l&(x)I2 is the probability density for the occurrence of an event at the point 
x ”  E R 4  at a given value of the invariant historical evolution parameter T $ .  

In the case of a particle with spin, the components of & ( x )  must transform as a 
representation of the Lorentz group; since the norm must be invariant, the representa- 
tion must be unitary. If we were to use infinite-dimensional representations containing 
all spins, we would reach a physical contradiction. One therefore turns to the induced 
representation of Wigner. 

Wigner’s representation corresponds, in the spin-; case, to 2 x 2 complex unitary 
matrices parametrised by the particle momentum, D (A, p)“ , .  Since the canonical 
variables x ” ,  p” satisfy (we take the metric signature to be (-, +, +, +)) 

[ x ” ,  p ” ]  = ig&” (1) 

the expectation value of x & ,  for example, would not be covariant. Hence, one uses 
a representation of this type induced on the little group of a time-like vector 
n ” ( n  ”n” = - 1) which commutes with x ” and p ”. The (two-component spin-i) wave- 
function then transforms as (Horwitz er a1 1975, Piron and Reuse 1978) 

J L b )  = D ( k  n ) ~ ~ , J ~ . * - l ~ , ~ , ( A - ’ ~ ) .  (2) 

t Work supported in part by the US-Israel Binational Science Foundation (BSF), Jerusalem, Israel. 
t In practice, measurements are not carried out at a fixed T. The electromagnetic field, for example, in a 
semiclassical treatment (Horwitz and Lavie 1982), is generated by a conserved current which is given by 
an integral over all T (i.e. associated with the entire world lines). Hence, a detector which is activated by 
electromagnetic interaction is sensitive to the space-time configuration of the system, but not to the values 
of T (see Arshansky et a[ 1982 for a discussion of this point). 
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Here 
D(A, n )  =L-’(n)hC(A-’n) (3) 

where L(n) ,  A are SL(2, C) matrices which satisfy 

Atu”n,A = u”(A- ’n)w ,  (4) 

and U” = (1, a); L ( n )  corresponds to a transformation bringing (+l, 0, 0,O) to n”. 
The conjugate representation, with matrices 4, is also defined by (4), but with 
Q” = (1, --U). Since AAt = 1, operators linear in U” or Q” connect these representa- 
tions, and hence we define the norm for the spin-i system, in the Hilbert space Xn, 
as (in the following, we differ from the treatment given in Piron and Reuse (1978)) 

J 

where & transforms with 4. from (2) and (3), it follows that L(n)$,, transforms with 
A, and &(n)&,  with 4; making this replacement in (9, and using the fact, obtained 
from (4), that L(n)+-’L(n)-’ = Tcr”n, and &(n)+-’&(n)-’ = Tq”n,, one finds that (we 
use the representation for y”’ given by Bjorken and Drell (1964)) 

N = *  J d4X L2;7n(x)y *n@,n(X) (6)  

2 where y n = y”nw ( ( y  * n )  = )), 

and T corresponds to n” in the positive or negative light cone. The wavefunctions 
defined by (7) transform as 

‘-b:n(X) =S(h)@,h-’n(A-’X), (8) 
and S(A) is generated in the usual way by Xu” = $ [y ” ,  y ” ] .  

ated with (6) .  We therefore consider the Hermitian and anti-Hermitian parts 
The Dirac operator y 9 p is not Hermitian in the (invariant) scalar product associ- 

K -1. 
L - 2(Y . P +Y * n Y * P Y n )  = - ( P  * n)(r  * n ) ,  

(9) K -1 5 
T -  2y ( y  * p -7  * n * p y n )  = -2iy5(P * K ) ( y  n ) ,  

where K ”  = X””nv, and we have introduced the factor y5 in the second of (9) so that 
KT is Hermitian and commutes with KL.  Since 

KZ = ( p  * n ) 2  and K $  = p 2  + ( p  * (10) 
we may consider K :  - K t  = p 2  as the operator analogous to the second-order mass 
eigenvalue condition for the free Dirac equation. For the equation of evolution 
(Horwitz and Piron 1973) 

ia@,,laT = K’-b,n (11) 

K o = ( 1 / 2 M ) ( K $  -K:). (12) 

we choose the free dynamical evolution operator to be 

Since (in the absence of electromagnetism), K L  and KT commute with each other and 
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KO, and y * n commutes with these operators as well ({y * n, K ”} = 0), the free solutions 
can be decomposed according to the projections 

In the special frame for which n” = (1, 0 ,  0, 0), P,,* is seen to correspond to helicity: 

2iy5K * p / [ p 2 + ( p  * n ) 2 ] 1 / 2 + a  *p/bl. (14) 

In the presence of electromagnetic interaction, we replace p by p - eA in KL and KT. 
The operator (12) then becomes (y n commutes with this K as well; note that y5 
also commutes with K and hence a chiral decomposition is also possible) 

(15) K = ( p  -eA)’ /2M +(e/2M)ZKvF,,(x) 

wheret 

Er”= Z@” +K’nv -K”n’. (16) 
The quantities K ”, ZsLv satisfy 

[K ,, K ”1 = -iI;f”, 

[ZK”,KA]=-i[(guA +n”nA)K,-(g’A+n’‘nA)K”], (17) 

-(gfiA + n ~ n ^ ) Z ; “ +  (g“” +nun ”)Z:”]. (18) 

Since K’n, = n F C r y =  0, there are only three independent K’ and three E:”. The 
Zz” (see remark after equation (19)) are a covariant form of the Pauli matrices, and 
(18) is the corresponding form of SU(2) in the space-like hypersurface orthogonal to 
n *, The three independent K”  correspond to the non-compact part of the algebra. 
The covariance of the theory follows from 

[I;:”, ~ ~ ~ = - i [ ( g ” ~ + n ” n ~ ) ~ ; K “ + ( g “ ~ + + n “ n ’ ” ) ~ ~ ”  

S- (NI; ::S ( A) A ;A: = z :. (19) 

In the special frame for which n” = (1, 0,  0, 0), E! becomes $ak (i, j ,  k cyclic) and X? 
goes to zero. In this frame (which we understand as the frame of the filter preparing 
the state), there is no electric interaction with the spin in the minimal coupling evolution 
operator (15). We remark that a spin coupling which becomes pure electric in the 
special frame is generated by (for p + p - eA) 

(20) i[KT, KL] = -ieyS(K ,n ” - K ”n ’)FwY. 

The discrete symmetries act on the wavefunctions as follows: 

The CPT conjugate wavefunction, according to its evolution in T, moves backwards 

T Internal angular momentum variables of the type E:”, K* have been used by Todorov (1981), but using 
p” in place of n” (in Todorov’s work, 2;” is equivalent to 2 ”  on the constraint hypersurface). 
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in space-time relative to the motion of If r(lTn contains only E > 0 components, 
it moves forward in t (Horwitz and Piron 1973) and corresponds to the system observed 
in the laboratory. If it contains only E < 0 components, the wave packet moves 
backward in t. It is then the CPT conjugate which corresponds to the observed system 
moving forward in time, with charge -e. No Dirac sea is required for the consistency 
of the theory (unbounded transitions to E < 0 are prevented by the conservation of K). 
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